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Front Matter Preface

Introduction

Topology is the branch of mathematics concerned with continuity and connectedness, and properties of
spaces that are invariant under continuous deformations.

For instance, the hairy ball theorem of algebraic topology states that there is no nonvanishing continuous
tangent vector field on the sphere (or “you can’t comb the hair on a coconut flat”). The object in
question being a sphere is not actually important to the theorem, and it holds on any smooth blob that
can be continuously deformed into a sphere. Note that this excludes say, a torus, which has a hole and
thus cannot be continuously deformed into a sphere. Topology makes precise this distinction between
a sphere and a torus (“homotopy classes”), and also formalises what it means to continously deform an
object (“homeomorphisms”).

Disclaimer: I make absolutely no guarantee that this document is complete nor without error. In
particular, any content covered exclusively in lectures (if any) will not be recorded here. This document
was written during the 2023 academic year, so any changes in the course since then may not be accurately
reflected.

Notes on formatting
New terminology will be introduced in italics when used for the first time. Named theorems will also be
introduced in italics. Important points will be bold. Common mistakes will be underlined. The latter
two classifications are under my interpretation. YMMV.

Content not taught in the course will be outlined in the margins like this. Anything outlined like this
is not examinable, but has been included as it may be helpful to know alternative methods to solve
problems.

The table of contents above, and any inline references are all hyperlinked for your convenience.

History
First Edition: 2023-11-30∗

Current Edition: 2024-03-27

Authors
This document was written by R.J. Kit L., a maths student. I am not otherwise affiliated with the
university, and cannot help you with related matters.

Please send me a PM on Discord @Desync#6290, a message in the WMX server, or an email to War-
wick.Mathematics.Exchange@gmail.com for any corrections. (If this document somehow manages to
persist for more than a few years, these contact details might be out of date, depending on the main-
tainers. Please check the most recently updated version you can find.)

If you found this guide helpful and want to support me, you can buy me a coffee!

(Direct link for if hyperlinks are not supported on your device/reader: ko-fi.com/desync.)

∗Storing dates in big-endian format is clearly the superior option, as sorting dates lexicographically will also sort dates
chronologically, which is a property that little and middle-endian date formats do not share. See ISO-8601 for more details.
This footnote was made by the computer science gang.

Introduction to Topology | iii

mailto:Warwick.Mathematics.Exchange@gmail.com
mailto:Warwick.Mathematics.Exchange@gmail.com
https://ko-fi.com/desync
https://ko-fi.com/desync


MA3F1 Glossary

1 Glossary

isomorphism, ∼= A morphism with a two-sided inverse. Does not necessarily correspond
with a bijective morphism in any given category.

homeomorphism, ∼= A bicontinuous bijection of topological spaces; an isomorphism in Top.

quotient map The function q : X → X
/
∼ canonically defined by x 7→ [x]∼.

identification map A continuous surjection that preserves openness of sets in both directions.

cover A collection of (open) sets whose union is the covered space.

Lebesgue number Given a cover U of a metric space (X,d), a number δ > 0 is a Lebesgue
number for U if for every x ∈ X there exists an open set U ∈ U such that
B(x,δ) ⊆ U . Or equivalently, δ > 0 is a Lebesgue number for U if every
subset S ⊆ X with diameter at most diam(S) ≤ δ is contained within
some member of the cover.

retract A subset A ⊆ X is a retract of X if there is a continuous map r : X → A
such that r

∣∣
A
= idA, called the retraction.

(strong)
deformation retract

A subset A ⊆ X is a (strong) deformation retract of X if there exists
a one-parameter family of maps ft : X → X, t ∈ I (or by uncurrying,
a single map F : X × I → X), such that f0 = idX ; f1(X) = A; and
ft
∣∣
A
= idA for all t ∈ I.

weak deformation
retract

Same as the above, but the final condition is relaxed to only t = 1.

(free) homotopy,
f ≃ g

A continuous map F : X × I → Y is a homotopy between the maps f1
and f2.

relative homotopy,
f
A≃ g

A homotopy that additionally fixes some subspace A ⊆ X for all t ∈ I.

homotopy relative to
the boundary, f

∂≃ g

A relative homotopy where A is the pair of endpoints of the paths.

linear homotopy The homotopy between f and g given by x 7→ (1− t)f(x) + tg(x).

homotopy
equivalence, X ≃ Y

A relaxation of isomorphism that only requires that the composition is
homotopic and not equal to the identity.
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MA3F1 Glossary

contractible A space is contractible if it is homotopy equivalent to the one-point space.

null-homotopic A map is null-homotopic if it is homotopic to some constant map.

connected A space is connected if it cannot be partitioned into two disjoint open
sets.

path-connected A space is path-connected if every pair of points may be connected by a
path.

neighbourhood basis A neighbourhood basis at a point x is a collection B of neighbourhoods of
x such that for any neighbourhood V of x, there exists a neighbourhood
B ∈ B such that B ⊆ V .

locally connected A space is locally connected if every point admits a neighbourhood basis
consisting of connected sets.

locally
path-connected

A space is locally path-connected if every point admits a neighbourhood
basis consisting of path-connected sets.

cover A covering of a space X is a map p : X̃ → X such that for every point
x ∈ X, there exists an open neighbourhood Ux ⊆ X of x and a discrete
(i.e. every set is open) space Dx ⊆ X̃ such that p−1[Ux] =

⊔
d∈Dx

Vd and
the restriction p

∣∣
Vd

: Vd → Ux is a homeomorphism for every d ∈ Dx.
The sets Ux are said to be evenly covered, and the open sets Vd are called
the sheets of the covering. The pair (X̃,p) is then a cover of X.

fibre The preimage of a singleton set under a covering.

deck transformation Given a covering p : X̃ → X, a deck transformation is a homeomorphism
τ : X̃ → X̃ such that p ◦ τ = p.

lift, f̃ Given a covering p : X̃ → X and a map f : Y → X, a lift of f is a map
f̃ : Y → X̃ such that p ◦ f̃ = f .

induced
homomorphism, f∗

Given a pointed map f : (X,x0) → (Y,y0), the induced homomorphism
of fundamental groups is the homomorphism f∗ : π1(X,x0) → π1(Y,y0)
defined by [α] 7→ [f ◦ α].

odd and even
function

A map f : X → Y is odd if f(−x) = −f(x); and even if f(−x) = f(x);
for all x ∈ X.

Introduction to Topology | 2
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wedge sum, ∨ The one point union of a collection of spaces; the disjoint union of a col-
lection of pointed spaces with the basepoints identified. This identified
point is a natural basepoint for the wedge sum, and picking this point
makes the wedge sum associative and commutative (up to homeomor-
phism).

reduced word A word in a free product is reduced if it does not contain any identities,
and if every pair of consecutive letters is not from the same group.
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MA3F1 Review of Point-Set Topology

2 Review of Point-Set Topology

2.1 Metric Spaces
Let X be any set. A metric d on X is a map d : X ×X → R≥0 such that,

(i) d(x,y) = 0 if and only if x = y (point separating or positive-definiteness);

(ii) d(x,y) = d(y,x) for all x,y ∈ X (symmetry);

(iii) d(a,b) ≤ d(a,x) + d(x,b) for every a,b,x ∈ X (triangle inequality).

Note that these axioms imply that d(x,y) ≥ 0 for all x,y ∈ X. The pair (X,d) is then called a metric
space.

Let (X,d) be a metric space. The open ball centred at a ∈ X of radius r is the set

B(a,r) = {x ∈ X : d(x,a) < r}

also denoted by B(a,r) or Br(a). If r = 1, we say that the ball is a unit ball, and we omit r from the
notation.

In a metric space (X,d), a set U ⊆ X is said to be open in X if for every point x ∈ U , there exists some
ε > 0 such that B(x,ε) ⊂ U . A set U ⊆ X is said to be closed in X if its complement is open in X. If
the ambient set X is clear, then we omit the “in X” and just say that a set is open or closed.

Example.

• In any metric space (X,d), X and ∅ are both simultaneously open and closed (or clopen).

• In R, open intervals are open and closed intervals are closed. Half-open intervals are neither open
nor closed.

• In a discrete metric space, every singleton set {x} ⊆ X is open (take any ε < 1).

Sets can be open, closed, both (clopen), or neither, so the adjectives “open” and “closed” do not have all
of their usual intuitive connotations when used in a mathematical context.

Lemma (Open Finite Intersection). If (Ui)ni=1 is a finite collection of sets open in (X,d), then
⋂n
i=1 Ui

is open in (X,d).

Proof. Take x ∈
⋂n
i=1 Ui. Then, for each i, x ∈ Ui, so there exists εi > 0 such that Bεi(x) ⊂ Ui. If

ε := min(ε1, . . . ,εn), then,

Bε(x) ⊆ Bεi(x) ⊂ Ui

for all i, and hence Bε(x) ⊂
⋂n
i=1 Ui. ■

Lemma (Open Arbitrary Union). If (Ui)i∈I is an arbitrary collection of sets open in (X,d), then
⋃
i∈I Ui

is open in (X,d).

Proof. If x ∈
⋃
i∈I Ui, then x ∈ Ui for some i ∈ I . Since Ui is open, there exists ε > 0 such that

B(x,ε) ⊂ Ui ⊆
⋃
i∈I Ui, so

⋃
i∈I Ui is open. ■

By De Morgan’s laws, we also have:

Corollary (Closed Finite Union). If (Fi)ni=1 is a finite collection of sets closed in (X,d), then
⋃n
i=1 Fi

is closed in (X,d).

Introduction to Topology | 4



MA3F1 2.2 Topological Spaces

Proof.

X \
n⋃
i=1

Fi =

n⋂
i=1

(X \ Fi)

As Fi is closed, X\Fi is open, so
⋂n
i=1(X\Fi) is the finite intersection of open sets, and hence X\

⋃n
i=1 Fi

is open. It follows that
⋃n
i=1 Fi is closed. ■

Corollary (Closed Arbitrary Intersection). If (Fi)i∈I is an arbitrary collection of sets closed in (X,d),
then

⋃
i∈I Fi is closed in (X,d).

Proof.

X \
⋂
i∈I

Fi =
⋃
i∈I

(X \ Fi)

As Fi is closed, X \ Fi is open, so
⋃
i∈I(X \ Fi) is the intersection of open sets, and hence X \

⋂
i∈I Fi

is open. It follows that
⋂
i∈I Fi is closed. ■

2.2 Topological Spaces
Many properties of a metric space do not depend on our exact choice of metric, and many familiar
notions such as convergence and continuity may be defined in terms of open sets, with no mention of a
metric at all. This motivates the introduction of a more general kind of space defined entirely in terms
of open sets.

A topology on a set X is a collection Ω of subsets of X, such that

(T1) X and ∅ are open;

(T2) If (Ui)i∈I ⊆ Ω, then
⋃
i∈I Ui ∈ Ω (arbitrary unions of open sets are open);

(T3) If U,V ∈ Ω, then U ∩ V ∈ Ω (binary intersections of open sets are open).

The pair (X,Ω) is then a topological space. We call the sets in Ω “open”. Note that by induction, (T3)
implies that the finite intersection of open sets is open.

These axioms mimic the ways open sets in metric spaces behave, but without reference to any kind of
metric. Every metric space induces a topological space; and conversely, if a topology is induced by some
metric, then the topology is said to be metrisable.

We often omit the topology from notation and speak about a set X as a topological space alone. Ad-
ditionally, unless otherwise stated, when considering a metric space (X,d) as a topological space, the
topology used will always be the topology induced from the metric.

The closed sets in a topological space are the complements of open sets. By De Morgan’s laws, the
collection F of closed sets satisfies:

(T1’) T and ∅ are closed;

(T2’) Arbitrary intersections of closed sets are closed.

(T3’) The union of finitely many closed sets is closed;

Introduction to Topology | 5



MA3F1 2.3 Maps and Topological Equivalence

Let (X,Ω) be a topological space. A set B ⊆ Ω is a basis for the topology Ω, or that B generates the
topology Ω, if every open set can be written as the union of sets in B. That is, for each U ∈ Ω, there
exists a collection {Bi}i∈I ⊆ B such that

⋃
i∈I Bi = U .

Given x ∈ X, a set B ⊆ Ω is a neighbourhood basis for x, if for every open set U containing x there is a
set in the basis containing x that is a subset of U . That is, if for every U ∈ Ω with x ∈ U , there exists
B ∈ B such that x ∈ B ⊆ U .

2.3 Maps and Topological Equivalence
Let X,Y be topological spaces. A function f : X → Y is continuous if for any open set U ⊆ X, the
preimage f−1[U ] =

{
x ∈ X : f(x) ∈ U

}
is open. Continuous functions are sometimes abbreviated to

maps.

Lemma 2.1 (Pasting Lemma). Let X = A ∪ B, with A,B both closed or both open in X, and let
f : X → Y be a function such that the restrictions f

∣∣
A

and f
∣∣
B

are continuous. Then, f is continuous.

Proof. We prove the case for open A,B.

Let U ⊆ Y be open in Y . Then, f−1[U ] = f
∣∣−1

A
[U ] ∪ f

∣∣−1

B
[U ], and because f

∣∣
A

and f
∣∣
B

are continuous,
f
∣∣−1

A
[U ] and f

∣∣−1

B
[U ] are open in A and B, respectively. Because A and B are open, f

∣∣−1

A
[U ] and f

∣∣−1

B
[U ]

are also open in X, so f−1[U ] is open in X as it is the union of open sets, and hence f is continuous.

Exchanging “open” with “closed” in the previous yields a completely analogous proof for closed A,B. ■

Given topological spaces X and Y , a continuous map f : X → Y is a (topological) isomorphism or a
homeomorphism if there exists a continuous map g : Y → X such that

f ◦ g = idY , g ◦ f = idX

If a homeomorphism between X and Y exists, then X and Y are isomorphic topological spaces, or are
homeomorphic, and we denote this relation (as usual) as X ∼= Y .

2.4 The Subspace Topology
Let (X,Ω) be a topological space, and S ⊆ X be a subset. The subspace topology on S is the set

ΩS = {U ∩ S : U ∈ Ω} (1)

and we call (S,ΩS) a subspace of (X,Ω).

Example.

• The (unit) n-sphere Sn or Sn is a subspace of Rn+1 defined by

Sn =

{
x ∈ Rn+1 : ∥x∥2 =

n+1∑
i=1

x2i = 1

}

Note that the superscript denotes the dimension of the sphere, and not the ambient space it is
contained within.

• The (closed, unit) n-disc Dn or Dn is a subspace of Rn defined by

Dn =

{
x ∈ Rn : ∥x∥2 =

n+1∑
i=1

x2i ≤ 1

}

The unit disc is a special case of a closed ball centred at the origin with radius 1.

Introduction to Topology | 6



MA3F1 2.5 Product Spaces

2.5 Product Spaces
Let X,Y be topological spaces. The product topology∗ on X ×Y is the topology generated by sets of the
form U × V with U and V open in X and Y , respectively.

Example.

• The product topology on
∏n
i=1 R coincides with the Euclidean topology on Rn (the topology

induced by the ℓ2 metric).

• The topological torus Tn or Tn is defined as the n-fold product of 1-spheres:

Tn =

n∏
i=1

S1

Unless otherwise qualified, “torus” usually refers to T 2 – the surface of a doughnut.

2.6 Disjoint Unions
Given a family of sets {Xi}i∈I , the disjoint union of this family is the set⊔

i∈I
Xi =

⋃
i∈I

{
(x,i) : x ∈ Xi

}
Each set in the disjoint union is forced to be disjoint from every other via the use of the auxilliary index
i, marking which set each element came from, so taking a disjoint union cannot lose information like a
union. Intuitively, each of the sets Xi is canonically isomorphic to the set X̃i = Xi × {i}, so each set
is equipped with a canonical embedding into the disjoint union, and furthermore, the images of these
embeddings partition the disjoint union.

Given two topological spaces X and Y , we can endow the disjoint union X ⊔ Y of the underlying sets
with a topology generated by the basis consisting of sets of the form U ×{i} for some i ∈ I and U ⊆ Xi

open.

Intuitively, in the disjoint union, the component spaces are now considered to be part of a single new
space, but each space is completely detached and isolated from every other space, and retains its original
local topology.

2.7 The Quotient Topology
Recall that an equivalence relation ∼ on a set X is a relation such that for all x,y,z ∈ X,

• x ∼ x (reflexivity);

• if x ∼ y, then y ∼ x (symmetry);

• if x ∼ y and y ∼ z, then x ∼ z (transitivity).

The equivalence class [x] of an element x ∈ X under an equivalence relation ∼ is the set of all elements
of X equivalent to x. That is, the set

[x] = {y ∈ X : x ∼ y}

The set of equivalence classes of an equivalence relation is denoted by X
/
∼ and read as “the quotient of

X by ∼”, and the quotient map is the function q : X → X
/
∼ defined by x 7→ [x].

∗More properly, this is the box topology, and not the true product topology, which is defined to be the coarsest topology
such that the projections onto each component are all continuous. For finite product spaces, these topologies coincide, but
for infinite products, the box topology is too fine and fails to satisfy a universal property.

Introduction to Topology | 7



MA3F1 2.7 The Quotient Topology

If X is a topological space, then the quotient topology on the set X
/
∼ is defined to have a set U ⊆ X

/
∼

open if and only if q−1[U ] =
{
x ∈ X : q(x) = [x] ∈ U

}
is open in X. Note that by definition, the

quotient map is continuous.

Example. Consider the unit interval I = [0,1], and let x ∼ y if and only if x = y and 0 ∼ 1 and 1 ∼ 0.
The quotient set I/∼, sometimes written as I

/
0 ∼ 1 as only 0 and 1 are identified, then consists of the

classes [x] = {x} for x ∈ (0,1) and [0] = [1] = {0,1}, so the endpoints of the interval have been “glued
together” into a circle, and in fact, the resulting space with the quotient topology is homeomorphic to
S1.

0 1

0 ∼ 1

More generally, let A ⊆ X be a subset of a topological space. This subset naturally induces the equiva-
lence relation defined by x ∼ y if and only if x = y or {x,y} ⊆ A, so every point of A is identified into
a single equivalence class, while the points x ∈ X \ A have singleton equivalence classes [x] = {x}. By
an abuse of notation, we write X/A for the corresponding quotient space where all the points of A are
identified into one point.

Example. Consider the square I2. Define an equivalence relation by (x,y) ∼ (x′,y′) if and only if
(x,y) = (x′,y′) or y = y′ and {x,x′} = {0,1}. That is, we identify points on the left boundary with points
on the right boundary with the same y-value. Visually, we represent this by marking an arrow on the
square:

Then, we may identify marked edges together, with the arrows pointing in the same direction:

And we can see that the quotient space I2/∼ is homeomorphic to a cylinder (without the end faces).

The quotient map is an example of an identification map – a continuous surjective function f : X → Y
between topological spaces X and Y such that U ⊆ Y is open if and only if f−1[U ] ⊆ X is open.

The reverse direction follows from continuity, so a identification map may also be characterised as a
surjective map which also preserves open sets under direct images. Or put another way, f : X → Y is an
identification map if and only if Y has the finest topology such that f is continuous (the final topology
with respect to f).

Theorem 2.2. A surjective map f : X → Y is an identification map if and only if for every space Z
and every function g : Y → Z, g ◦ f is continuous if and only if g is continuous.

Introduction to Topology | 8
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3 Compactness

A cover of a set A is a collection U of sets whose union contains A. That is,

A ⊆
⋃
U∈U

U

and we say that the elements of U cover A. A subcover of a cover U is a subset of U whose elements
still cover A. A cover is open if every element of the cover is open.

Example.

• U = {(n − 2,n + 2) : n ∈ Z} is an (open) cover of R, with one possible subcover given by
S = {(n− 2,n+ 2) : n ∈ 2Z};

• U = {(n,n+ 1) : n ∈ Z} is not a cover of R since it does not cover the integers.

A topological space T is compact if every open cover of T has a finite subcover.

Example.

• (0,1) is not compact because U = {(0,a) : a ∈ (0,1)} is an open cover with no finite subcover;

• R is not compact because U = {(−∞,a),a ∈ R} has no finite subcover.

Note that, because compactness depends only on the open sets of a topological space, it is a topological
invariant.

3.1 Lebesgue Numbers
Let U be an open cover of a metric space (X,d). A number δ > 0 is called a Lebesgue number for U if
for every x ∈ X, there exists an open set U ∈ U such that B(x,δ) ⊆ U .

In general, open covers do not have a Lebesgue number. For instance, U =
{
(x2 ,x) : x ∈ (0,1)

}
form

an open cover of (0,1), but the covering sets become arbitrary small as x → 0, so no Lebesgue number
exists.

Lemma (Lebesgue’s Number Lemma). Every open cover U of a compact metric space (X,d) has a
Lebesgue number.

Introduction to Topology | 9
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4 Diagrams

The structure of a collection of objects and morphisms (sets and set functions, topological spaces and
continuous maps, etc.) is often visually represented as a directed graph, called a diagram. We are
already familiar with the notation A → B to denote a morphism from A to B, but we can also draw
larger diagrams with more objects and morphisms to represent more structure at once. For instance,
this diagram depicts 3 objects with morphisms between them:

X Y

Z

h

f

g

A diagram is commutative if for every pair of objects in the diagram, all routes between them are equal.
For instance, the diagram above is commutative if and only if h = g ◦ f . This also justifies the omission
of identity morphisms in general diagrams; they don’t meaningfully add any additional paths to the
diagram.

4.1 Isomorphisms
Suppose we have objects A and B and morphisms f : A → B and g : B → A such that the following
diagram is commutative:

A BidA idB

f

g

That is, f ◦ g = idB and g ◦ f = idA, so f and g are mutually inverse. Then, we say that f and g are
isomorphisms, and we alternatively label g by f−1. If an isomorphism between a pair of objects A and
B exists, we say that A and B are isomorphic and we write A ∼= B.

Isomorphic objects are, as far as the ambient category is concerned, effectively identical – anything you
can say about one object will apply just as well to any other isomorphic object.

5 The Fundamental Problem

The fundamental problem in topology is to classify topological spaces up to homeomorphism. That is,
given two topological spaces X and Y , can we determine whether X ∼= Y or not?

To show that two spaces are homeomorphic, one only needs to provide a homeomorphism. To prove that
they are not homeomorphicm is much more difficult. This involves finding a property that is invariant
under homeomorphism that is satisfied by one space, but not the other.

Example. {∗} ≁= R because {∗} is finite (bounded, countable, compact, etc.), but R is not.

Example. R ̸∼= R2 because R can be disconnected by removing one point, but R2 cannot.

But what about R2 and R3? Or R3 and R4? Or more generally, Rn and Rm?

Compactness and cut-point arguments don’t work in the general case, and most other topological in-
variants we have seen are also not sufficiently powerful to distinguish these spaces. One might think
these pairs of spaces are not homeomorphic, as one feels “bigger”; but set-theoretically, they all have the
same cardinality (apart from R0 ∼= {∗}). It turns out that showing that two real vector spaces are not
homeomorphic is non-trivial.

Theorem 5.1 (Invariance of Domain, Brouwer 1912). Rn ∼= Rm if and only if m = n.

We will develop some tools that will allow us to prove a partial version of this theorem in low dimensions.
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5.1 Retractions
A pair (X,A) consists of a topological space X and a subspace A ⊆ X. When A = {x} is a single point,
we instead write (X,x), and call the pair a pointed space (we sometimes call X alone a pointed space
with basepoint x).

A map of pairs f : (X,A) → (Y,B) is a continuous function f : X → Y such that f(A) ⊆ B. If A and B
are points, then f is a pointed or based map.

A subset A ⊆ X is a retract of X if there is a map r : X → A, called the retraction, such that

r
∣∣
A
= idA

That is, r surjects X onto A while keeping all points of A fixed.

Example. For any pointed space (X,x0), the unique constant map r : X → {x0} is a retraction.

Example. R2 \ {0} retracts to S1 via r(x) = x
∥x∥ .

Example. I does not retract to {0,1}, as the continuous image of a connected space must be connected.

The following generalisation is non-trivial, and we will only be able to prove the n = 2 case later.

Theorem 5.2 (Brouwer). The disc Dn does not retract to Sn−1

A subset A ⊆ X is a (strong) deformation retract of X if there exists a one-parameter family of maps
ft : X → X, t ∈ I (or by uncurrying, a single map F : X × I → X), such that

• f0 = idX ;

• f1(X) = A;

• ft
∣∣
A
= idA for all t ∈ I.

Or, for all x ∈ X and a ∈ A,

• F (x,0) = x;

• F (X,1) = A;

• F (a,t) = a for all t ∈ I;

(A weak deformation retract relaxes the final condition for only t = 1. We will take the unqualified term
“deformation retract” to always refer to the strong case.) Note that, by construction, f1 is a retraction
from X to A.

Example. Rn retracts to 0 via F (x,t) = (1− t)x. This is the straight-line or linear homotopy.

Example. Rn \ {0} deformation retracts to Sn−1 via F (x,t) = (1− t)x+ t x
∥x∥

Intuitively, a deformation retract continuously shrinks a space onto a subspace; as the parameter t
increases, the image of F continuously transitions from all of X to only all of A, with A being fixed
throughout the entire process.

We can also view F as a kind of mapping between the retraction f1 and the identity f0 = idX on X,
smoothly transforming one map to the other – and in fact, this kind of parametrised deformation between
two maps defines a construction called a homotopy.
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5.2 Homotopy
Let X and Y be topological spaces. A (free) homotopy is a continuous map F : X × I → Y . If
ft(x) = F (x,t), then we say that F is a homotopy from f0 to f1. Two maps f,g : X → Y are homotopic
if there exists a homotopy F : X × I → Y such that f = f0 and g = f1, and we write f ≃ g to denote
this relation.

Theorem 5.3. Homotopy is an equivalence relation on the set of continuous maps between two given
topological spaces. That is, if f,g,h : X → Y are continuous maps, then

(i) f ≃ f ;

(ii) If f ≃ g, then g ≃ f ;

(iii) If f ≃ g and g ≃ h, then f ≃ h.

Proof.

(i) The constant homotopy F (x,t) = f(x) is a homotopy between f and f .

(ii) If F is a homotopy from f to g, then F
(
−,(1− t)

)
is a homotopy from g to f .

(iii) If F is a homotopy from f to g and G is a homotopy from g to h, then

H(x,t) =

{
F (x,2t) t ≤ 1

2

G(x,2t− 1) t > 1
2

is a homotopy from f to h, with continuity given by the pasting lemma.

■

Recall that two spaces X and Y are homeomorphic if there exist a pair of maps between them with
compositions equal to identities:

X Y
f

g

g ◦ f = idX and f ◦ g = idY
If we relax these conditions and only require that these compositions are homotopic to identities, then
we obtain a weaker notion of likeness called homotopy equivalence:

X Y
f

g

g ◦ f ≃ idX and f ◦ g ≃ idY

We also say that f and g are homotopy inverse to one another.

Equality induces homotopy, but not the converse, so homeomorphic spaces are homotopy equivalent, but
not the converse. More importantly, this means that two spaces that are not homotopy equivalent cannot
be homeomorphic, allowing us another method to prove that two spaces are topologically distinguishable.

A space is always homotopy equivalent to any of its deformation retracts.

Example. Rn \ {0} ≃ Sn−1, as Sn−1 is a deformation retract of Rn.

In more detail, the homotopy equivalence is witnessed by the inclusion mapping f : Sn−1 ↪→ Rn \ {0}
and the retract g : Rn \ {0} → Sn−1 defined by x 7→ x

∥x∥ . Then, g ◦ f = idSn−1 , and f ◦ g is homotopic
to idRn via the straight-line deformation retract F (x,t) = (1− t)x+ t x

∥x∥ found earlier.

Theorem 5.4. Homotopy equivalence is an equivalence relation on the class of topological spaces.
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Proof. Symmetry and reflexivity are obvious. For transitivity, suppose X ≃ Y and Y ≃ Z witnessed by
maps

X Y Z
f1

g1

f2

g2

and homotopies F1 from f1 ◦ g1 to idY and F2 from f2 ◦ g2 to idZ . (Note that this diagram does not
necessarily commute.)

Then, f = f2 ◦ f1 and g = g1 ◦ g2 are homotopy equivalence maps, with the homotopy from f ◦ g to idZ
given by

F (z,t) =

{
f2 ◦ F1(z,2t) ◦ g2 t ≤ 1

2

F2(z,2t− 1) t > 1
2

■

A topological space X is contractible if X ≃ {∗}. Or equivalently, if idX is homotopic to a constant map
(is null-homotopic).

Example. Euclidean space of any dimension is contractible: Rn ≃ R0 for any n ∈ N.

Consider the unique constant map f : Rn → R0 defined by x 7→ 0 and the inclusion map g : R0 ↪→ Rn.

Then, we have f ◦ g = idR0 , and the composition g ◦ f : Rn → Rn maps everything to zero, and is
homotopic to the identity via the straight-line homotopy

F : Rn × I → Rn : (x,t) 7→ tx

Example. Because {∗} ∼= R0, the above implies that Rn ≃ Rm for all n,m. More generally, for any
topological space X, X × Rn ≃ X.

In general, it is much more difficult to show that a space is not contractible. For instance, the proof that
Sn is not contractible for any n ≥ 1 is non-trivial.

We can also compare the notions of contractibility with that of deformation retracts.

Theorem 5.5. If X deformation retracts to a point x0 ∈ X, then it is contractible.

Proof. Consider the retraction given by the unique constant map f : X → {x0}, and the inclusion
mapping g : {x0} ↪→ X. We have f ◦ g = id{x0}, and g ◦ f = f1 and idX = f0, where ft is the
deformation retraction. The deformation retraction then gives the required homotopy. ■

Note that the converse does not hold, as the ordinary free homotopy demanded by a contractible space
does not have to keep x0 fixed throughout the homotopy.

Theorem 5.6. The sphere Sn is not contractible for any n ≥ 0.

This theorem is highly non-trivial; we will only be able to prove the case n = 1 using the homotopy
theory developed here.

5.3 Paths
Let X be a topological space, and x,y ∈ X be two points. A path from x to y is a continuous map
f : I → X with f(0) = x and f(1) = y. We can view f(s) as the position of a particle traveling along
some curve in X as s varies from 0 to 1.

Note however, that a path is distinct from its image, and in particular, may not be injective. For instance,
the image of the path s 7→ exp(4πis) in S1 ⊂ C is the circle S1, but the path itself travels around the
circle twice and is distinct from, for example, the path s 7→ exp(2πis).
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Given two paths f,g : I → X with f(1) = g(0), the path f ∗ g : I → X defined by

(f ∗ g)(s) =

{
f(2s) s ∈ [0, 12 ]

g(2s− 1) s ∈ [ 12 ,1]

is called the concatenation of f and g, with continuity given by the pasting lemma. Intuitively, the
concatenation traverses the first path at double speed, then the second path at double speed.

Given a path f : I → X from x to y, the reverse path f defined by f(s) = f(1 − s) is the path from y
to x obtained by traversing f in the opposite direction.

We will often change the arguments to a map in concatenations and other similar operations, so it is
helpful to be able to rescale any interval [a,b] to [0,1]. This can be done via the affine map

f(x) =
x− a

b− a

i.e. translate down by a to reach zero, then rescale by the difference to reach 1.

Example. In the above concatenation, we have the intervals [0, 12 ] and [ 12 ,1]. The rescaled argument of f
is given by

(
1
2 − 0

)−1
(s− 0) = 2s, and of g by

(
1− 1

2

)−1 (
s− 1

2

)
= 2s− 1.

Because paths are maps between topological spaces, we can also consider homotopies of paths. Given
two paths f,g : I → X, a homotopy between them is given by a map F : I × I → X satisfying f0 = f
and f1 = g.

Because the domain of such a homotopy is a square I × I, it can be visualised as

f

g

s = 0 s s = 1

t = 0

t

t = 1

Each horizontal slice of the square at represents one of the functions ft, with the bottom edge being f
and the top edge being g, while each vertical slice represents the trajectory of a fixed argument s under
the continuous deformation from f to g. This representation isn’t very interesting yet, but will become
helpful once we consider homotopies of concatenations.

The notion of free homotopy is, however, too weak to be very useful, since every path is homotopic to a
constant path (i.e. deformation retract to the constant map at any point on the path), and we don’t get
much useful information from this. Instead, we can consider only paths that share endpoints, and define
a more restricted notion of homotopy.

Let x,y ∈ X and f,g : I → X be paths from x to y. In contrast to a free homotopy, a homotopy relative
to the boundary or endpoints (sometimes abbreviated to “rel boundary”) from f to g is a homotopy
F : I × I → X satisfying

• f0 = f ;

• f1 = g;

• ft(0) = x for all t ∈ I;

• ft(1) = y for all t ∈ I.
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or as a diagram,

f

y

g

x

s

t

That is, a homotopy relative to boundaries is a continuous deformation of one path to another that keeps
the endpoints of the paths fixed for all values of the parameter t. If there exists a homotopy relative to
boundaries between f and g, then we write f

∂≃ g to denote this relation.

Example. The paths f,g : I → S1 defined by f(s) = exp(πis) and g(s) = exp(−πis) traverse the upper
and lower halves of the circle, respectively.

1−1

These paths are homotopic, as both can deformation retract to, for example, the point 1. However, they
are not homotopic relative to boundaries. Intuitively, there is no way to continuously deform one to the
other due to the hole in the circle that the two paths enclose. Proving this formally, however, is difficult.

Lemma 5.7. For any pair of points x,y ∈ X, relative homotopy is an equivalence relation on the set of
paths from x to y.

Proof. The proof is almost identical to that of free homotopy:

(i) The constant homotopy is a homotopy relative to boundaries from a path to itself.

(i) If F is a relative homotopy from f to g, then F
(
−,(1− t)

)
is a relative homotopy from g to f .

(i) If F is a relative homotopy from f to g and G is a relative homotopy from g to h, then

H(s,t) =

{
F (s,2t) t ≤ 1

2

G(s,2t− 1) t > 1
2

f

y

y

h

x

x

g
G

F

s

t

is a relative homotopy from f to h.

■
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Lemma 5.8. Let f,g : I → X be paths from x to y satisfying f
∂≃ g and f ′,g′ : I → X be paths from y

to z satisfying f
∂≃ g. Then, f ∗ f ′ ≃ g ∗ g′.

Proof. The proof is identical to that of transitivity in the previous lemma with the roles of s and t
reversed.

If F is a relative homotopy from f to g and G is a relative homotopy from g to h, then

H(s,t) =

{
F (2s,t) t ≤ 1

2

G(2s− 1,t) t > 1
2

f f ′

z

g′g

x y GF

s

t

is a relative homotopy from f ∗ f ′ to g ∗ g′. ■

More generally, a homotopy between maps f,g : Z → X may be relative to any subspace A ⊆ X. That
is, the homotopy fixes the elements of the subspace A, and we write f

A≃ g if such a homotopy exists. A
homotopy relative to boundaries is then the special case where the subspace consists of the two endpoints
of the paths involved.

If we write ι : A ↪→ X for the inclusion of A into X, then a deformation retract is just a special case of
a retraction r : X → A such that ι ◦ r is homotopic to idX , relative to A.

5.4 Loops
A loop is a special case of a path where the two endpoints coincide. That is, a continuous map f : I → X
with f(0) = f(1) = x0 ∈ X, and we say that f is a loop based at x0 or with basepoint x0.

Because loops are a special case of paths, homotopy relative to boundaries is also an equivalence relation
on the set of loops at some basepoint, so given a fixed point x0, we can form equivalence classes of the
form

[f ] =
{
(g : I → X) : g(0) = g(1) = x0, g

∂≃ f
}

A homotopy relative to boundaries between loops is also called a based homotopy, since the preserved
subspace is a single point, as in a pointed space.

Given a pointed space (X,x0), we denote the set of homotopy classes of loops based at x0 as

π1(X,x0) =
{
[f ] : f(0) = f(1) = x0

}
The concatenation of two loops based at x0 is also a loop based at x0, and we also have that if f ≃ g
and f ′ ≃ g′, then f ∗ f ′ ≃ g ∗ g′, so concatenation is compatible with homotopy. This allows us to define
an operation

[f ] • [g] := [f ∗ g]

For any pointed space (X,x0), the set π1(X,x0) equipped with this operation forms a group, called the
fundamental group or first homotopy group of (X,x0).

Introduction to Topology | 16



MA3F1 5.4 Loops

Theorem 5.9. For any pointed space (X,x0), the
(
π1(X,x0),•

)
is a group, with unit [e], where e is the

constant loop, and the inverse [f ]−1 of the element [f ] is the class [f ], where f(t) = f(1−t) is the inverse
loop.

Proof. A homotopy showing f ∗ e ∂≃ e ∗ f can be given as a diagram

f e

x0

fe

x0 f

x0

x0

s

t

To find the equation for this homotopy, we find the interval where f is applied to s; [ t2 ,
1+t
2 ], as the

homotopy will be constant outside of this interval; then find the affine function that varies from 0 to 1

as s varies from t
2 to 1+t

2 ;
(
1+t
2 − t

2

)−1 (
s− t

2

)
= 2s− t:

F (s,t) =


x0 s ∈ [0, t2 ]

f(2s− t) s ∈ [ t2 ,
1+t
2 ]

x0 s ∈ [ 1+t2 ,1]

The homotopy e ∗ f ∂≃ f is then given by

f

x0

fe

x0 f

x0

s

t

We again find the argument,
(
1− t

2

)−1 (
s− t

2

)
= 2s−t

2−t , and then set the function to be constant past
the linear bound:

F (s,t) =

{
x0 s ∈ [0, t2 ]

f( 2s−t2−t ) s ∈ [ t2 ,1]

For inverses, let f : I → X be a loop at x0, and let f : I → X be the loop defined by f(s) = f(1 − s).

Then, the homotopy f ∗ f ∂≃ e is given by
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f f

x0

e

x0

f f

x0 x0

s

t

The concatenation f ∗ f represents walking along f (at double speed), then walking back along the same
path in reverse (also in double speed). Here, as t increases, the homotopy represents walking at the same
speed, but along less and less of the path before returning (so no rescaling is performed this time):

F (s,t) =


x0 s ∈ [0, t2 ]

f(2s− t) s ∈ [ t2 ,
1
2 ]

f(2s− 1 + t) s ∈ [ 12 ,1−
t
2 ]

x0 s ∈ [1− t
2 ,1]

Since reversal is involutive, replacing f by f in the previous argument yields a homotopy f ∗ f ∂≃ e.

For associativity, a homotopy (f ∗ g) ∗ h ∂≃ f ∗ (g ∗ h) is given by

f g h

x0

hgf

x0

f

g
h

s

t

For f , the argument is
(
1+t
4 − 0

)−1
(s − 0) = 4s

1+t ; for g,
(
2+t
4 − 1+t

4

)−1 (
s− 1+t

4

)
= 4s − 1 − t; and for

h,
(
1− 2+t

4

)−1 (
s− 2+t

4

)
= 4s−2−t

2−t :

F (s,t) =


f( 4s

1+t ) s ∈ [0, 1+t4 ]

g(4s− 1− t) s ∈ [ 1+t4 , 2+t4 ]

h( 4s−2−t
2−t ) s ∈ [ 2+t4 ,1]

■

5.5 The Fundamental Group

5.5.1 Path-Connected Spaces

A space X is path-connected if for every pair of points x,y ∈ X, there exists a path from x to y.

Theorem 5.10. If X is path-connected, then for any two points x0,x1 ∈ X, we have an isomorphism of
fundamental groups, π1(X,x0) ∼= π1(X,x1).

Theorem 5.11. For each path h : I → X from x0 to x1, define the map βh : π1(X,x0) → π(X,x1) by
[f ] 7→ [h ∗ f ∗ h].
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Then,

βh
(
[f ] • [g]

)
= βh

(
[f ∗ g]

)
= [h ∗ f ∗ g ∗ h]
= [h ∗ f ∗ h ∗ h ∗ g ∗ h]
= [h ∗ f ∗ h] • [h ∗ g ∗ h]
= βh

(
[f ]
)
• βh

(
[g]
)

so βh is a group homomorphism for any path h. In particular, the map βh induced by the reverse path is
also a group homomorphism.

Because h ∗ h ∂≃ ex0
and h ∗ h ∂≃ ex1

, we also have

βh ◦ βh
(
[f ]
)
= [h ∗ h ∗ f ∗ h ∗ h]
= [f ]

= idπ1(X,x0)

(
[f ]
)

and similarly, βh ◦ βh = idπ1(X,x1), so βh and βh are inverse maps and hence form an isomorphism
π1(X,x0) ∼= π1(X,x1).

Due to these isomorphisms, for path-connected spaces X, we may omit the basepoint and write just
π1(X) for the fundamental group.

6 Covering Spaces

Let X be a topological space. A covering of X is a map p : X̃ → X such that for every point x ∈ X,
there exists an open neighbourhood Ux ⊆ X of x and a discrete (i.e. every set is open) space Dx ⊆ X̃
such that

p−1[Ux] =
⊔
d∈Dx

Vd

and the restriction p
∣∣
Vd

: Vd → Ux is a homeomorphism for every d ∈ Dx. Such an open set Ux is said
to be evenly covered by p, and the open sets Vd are called the sheets of the covering.

If p : X̃ → X is a covering, then the pair (X̃,p) is called a covering space or cover of X, and X is said
to be the base of the covering.

Intuitively, a covering is a surjective map that acts locally like a projection of multiple copies of a space
onto itself.

The preimage p−1
[
{x}
]

of any point x is called the fibre of x. A covering p : X̃ → X is called an n-fold
covering if the fibre p−1

[
{x}
]

consists of n points for all x ∈ X.

Example. For any k ∈ N, the map pk : S1 → S1 defined by z 7→ zk is a covering map. Given a point
z = exp(2πit) ∈ S1, we take the open neighbourhood U =

{
exp(2πis) : |s− t| < ε

}
for some 0 < ε < 1

2k ,
which has preimage

p−1[U ] =

{
k
√
exp(2πis),|s− t| < ε

}
=

⋃
0≤j<k

{
exp

(
2πi

s+ j

k

)
: |s− t| < ε

}
< ε
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These sets are all homeomorphic to V =
{
exp(2πis/k) : |s− t| < ε

}
, and because t+ε+j

k < t−ε+(j+1)
k for

each j, they are all disjoint, so,

=

n⊔
i=1

V

Intuitively, the preimage of the arc of length 2ε = 1
k centred on z is the collection of arcs that each cover

1
k th of the circle, centred on each root of z, and these arcs are disjoint as there are exactly k such roots
evenly spaced along the circle.

This covering is also an k-fold covering map, as the fibre of any point z = exp(2πit) consists of k many
kth roots of z – namely exp

(
2πi(t+ j)/k

)
, for 0 ≤ j < k.

Example. The map p∞ : R → S1 defined by x 7→ exp(2πix) is a covering map. Given a point z =
exp(2πit) ∈ S1, we take the open neighbourhood U =

{
exp(2πis) : |s − t| < ε

}
for some 0 < ε < 1,

which has preimage

p−1[U ] =
⋃
j∈Z

{s+ i : |s− t| < ε}

=
⊔
j∈Z

V

Two coverings p : Y → X and q : Z → X are isomorphic if they factor through each other. That is,
there exist maps f and g such that

p = q ◦ f and q = p ◦ g

This also implies that f and g are inverse, so equivalently, p and q are isomorphic if there exists a
homeomorphism h : Y → Z such that

Y Z

X
qp

h
∼=

commutes.

Example. p2 is isomorphic to p−2 via the homeomorphism h(z) = z−1.

Example. p2 and p3 are not isomorphic, as one is a 2-fold covering, and the other is a 3-fold covering.

Let p : X̃ → X be a covering of X. A deck transformation is a homeomorphism τ : X̃ → X̃ such that
p ◦ τ = p. That is, τ witnesses an automorphism of p. The set of all deck transformations of a cover p is
denoted Deck(p), and has group structure under composition.

Example. The map z 7→ −z is a deck transformation for p2.

6.1 Liftings

Given a covering p : X̃ → X and a map f : Y → X, a lift of f is a map f̃ : Y → X̃ such that

X̃

Y X

p

f

f̃

commutes. That is, f factors through f̃ .
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Lemma 6.1. Let p : X̃ → X be a cover, and let f̃ ,g̃ : Y → X̃ be continuous maps. Then,

(i) f̃ is a lift of p ◦ f̃ ;

(ii) If f̃ ≃ g̃, then p ◦ f̃ ≃ p ◦ g̃ (“homotopies descend”);

(iii) If α,β : I → X are paths with α(1) = β(0), then p ◦ (α ∗ β) = (p ◦ α) ∗ (p ◦ β) (“paths descend”).

Proof.

(i) The diagram

X̃

Y X
p◦f̃

f̃
p

trivially commutes.

(ii) Let F : Y × I → X̃ be a homotopy between f0 = f̃ and f1 = g̃. Then, p ◦ F : Y × I → X is a
homotopy between p ◦ f0 = p ◦ f̃ and p ◦ f1 = p ◦ g̃.

(iii) Expanding the definition of concatenation, we have

(
p ◦ (α ∗ β)

)
(s) = p ◦

{
α(2s) s ∈ [0, 12 ]

β(2s− 1) s ∈ [ 12 ,1]

=

{
p ◦ α(2s) s ∈ [0, 12 ]

p ◦ β(2s− 1) s ∈ [ 12 ,1]

=
(
(p ◦ α) ∗ (p ◦ β)

)
(s) ■

6.2 Homotopy Lifting Property
Let p : Z → X be a continuous map. Then, p has the homotopy lifting property (HLP) if for any
homotopy F : Y × I → X and lift g : Y ×{0} → Z of f0 (i.e. f0 = p ◦ g), there exists a unique homotopy
F̃ : Y × I → Z such that

(i) f̃0 = g;

(ii) p ◦ F̃ = F .

That is,
Y × {0} Z

Y × I X

g

p

F

ι
F̃

commutes.

If we take Y = {∗} to be a singleton set, we may interpret the homotopies above as paths, and a lift
g : {∗} × {0} → Z is simply a choice of a point in p−1

[
{x0}

]
:

Let p : Z → X be a continuous map. Then, p has the path lifting property (PLP) if for any path
f : I → X with f(0) = x0 and point x̃0 ∈ p−1

[
{x0}

]
, there exists a unique path f̃ : I → Z with
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f̃(0) = x̃0 and p ◦ f̃ = f .
{∗} × {0} ∼= {∗} Z

{∗} × I ∼= I X

g

p

f

ι
f̃

6.2.1 The Local Homotopy Lifting Property

Let U be an open cover of a metric space (X,d).

The diameter of a subset S ⊆ X is the least upper bound of the distance between any pair of points in
that subset:

diam(S) = sup
x,y∈S

d(x,y)

Recall that a number δ > 0 is called a Lebesgue number for U if for every x ∈ X, there exists an open
neighbourhood U ∈ U of x such that B(x,δ) ⊆ U .

Equivalently, δ > 0 is a Lebesgue number for U if every subset S ⊆ X with diameter at most diam(S) ≤ δ
is contained within some member of the cover.

Lemma. Let {Iα}α be an open cover of the unit interval I. Then, there exists a Lebesgue number for
this cover. That is, there exists some δ > 0 such that for every S ⊆ I with diameter diam(S) ≤ δ, we
have S ⊆ Iα for some α.

This is a special case of Lebesgue’s number lemma (§ 3.1) applied to the unit interval.

Recall that, given a covering space p : X̃ → X, we can find a covering of X by evenly covered sets {Uα}α
such that the preimage of each set Uα is a disjoint union of open sets {V βα }β

p−1[Uα] =
⊔
β

V βα

and furthermore, the restrictions of the covering to each of these sets is a homeomorphism

p
∣∣
V β
α
: V βα

∼=→ Uα

wth inverses denoted by qβα : Uα → V βα .

Let F : Y × I → X be a homotopy and g : Y × {0} → X̃ be a lift of f0, and suppose that the image
of F is contained within an evenly covered subset Uα ⊆ X. If the lift carries the domain of f0 to one
of the sheets V β – that is, if g(Y × {0}) ⊆ V β – then we can lift the whole homotopy F to a homotopy
F̃ := qβα ◦ F that extends g.

Lemma 6.2. Let p : X̃ → X be a covering, and let F : Y × I → X be a homotopy. Let g : Y ×{0} → X̃
satisfy p ◦ g = f0. Then, for every y0 ∈ Y , there exists an open neighbourhood N ⊆ Y and a unique
homotopy F̃N : N × I → X̃ such that

• p ◦ F̃N = F
∣∣
N×I ;

• F̃N (−,0) = g
∣∣
N×{0}

Moreover, if M ⊆ Y is another such neighbourhood of y0, then

F̃M
∣∣
(M∩N)×I = F̃N

∣∣
(M∩N)×I = F̃M∩N
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Theorem 6.3. Covering maps satisfy the homotopy lifting property

Proof. Let p : X̃ → X be a covering of X and f : Y → X be continuous. Cover Y × I with open sets
Nα × I as in the previous lemma.

This yields a family of lifts F̃Nα : Nα × I → X̃ that coincide on the intersection of any two sets Ni × I
and Nj × I in the cover, and hence we have a well-defined function F̃ : Y × I → X̃ defined by piecing
these lifts together. Since each local lift is continuous, F̃ is continuous by the pasting lemma, and is
therefore itself a lift.

Uniqueness follows from the uniqueness of the homotopy given by the previous lemma. ■

6.3 The Fundamental Group of the Circle

Lemma 6.4. The map Φ : Z → π1(S
1,1) defined by n 7→ [ωn] is a group homomorphism.

Proof. The map ω̃n : I → R defined by t 7→ nt satisfies

ωn = p∞ ◦ ω̃n

so it is a lift of ωn. Define the deck transformation τ : R → R by t 7→ t+n and consider the composition
ω̃m · (τm ◦ ω̃n). This composition is a path in R from 0 to m + n, and is therefore homotopic to ω̃m+n

(e.g. via the straight-line homotopy).

Then,

Φ(m+ n) = [ωm+n]

= [p∞ ◦ ω̃m+n]

=
[
p∞ ◦

(
ω̃ · (τ ◦ ω̃n)

)]
= [p∞ ◦ ω̃m · p∞ ◦ τm ◦ ω̃n]
= [p∞ ◦ ω̃m] • [p∞ ◦ τm ◦ ω̃n]
= [p∞ ◦ ω̃m] • [p∞ ◦ ω̃n]
= [ωm] • [ωn]
= Φ(m) • Φ(n)

■

Theorem 6.5. The map Φ : Z → π1(S
1,1) defined by n 7→ [ωn] is a group isomorphism.

Proof. By the path lifting property of covers, given a loop α ∈ S1, there exists a unique lift α̃ : I → R
such that

(i) p ◦ α̃ = α;

(ii) α̃(0) = 0.

Since α(1) = 1 and p ◦ α̃ = α, we have ã(1) ∈ p−1
[
{1}
]
= Z. Denote this value by n := α̃(1). We

then have α̃
∂≃ ω̃n since both are paths from 0 to n in R, with a homotopy given by the straight-line

homotopy. Since homotopies descend,

α = p∞ ◦ α̃ ∂≃ p∞ ◦ ωn = ω

so [α] = [ωn] and Φ is surjective.

Introduction to Topology | 23



MA3F1 Induced Homomorphisms

Now, suppose that Φ(n) = [ωn] = [e]. That is, ωn
∂≃ e, given by a homotopy F : I × I → S1 from

f0 = ωn to f1 = e.

Define a map g : I × {0} → R by g(s,0) = ω̃n. The cover p then lifts F to a homotopy F̃ : I × I → R
from f̃0 = g to p ◦ F̃ = F . The other end of the homotopy f̃1 then satisfies p ◦ f̃1 = e, the constant loop.
Thus,

• f̃0(0) = 0 since f̃0 = ω̃n;

• f̃0(1) = n since f̃0 = ω̃n;

• f̃t(0) ∈ Z since p∞ ◦ f̃t(0) = ft(0) = 1;

• f̃t(1) ∈ Z since p∞ ◦ f̃t(1) = ft(1) = 1;

• f̃1(s) ∈ Z since p∞ ◦ f̃1(s) = e(s) = 1;

As the continuous image of a connected space is connected, any continuous map that takes values in
Z ⊆ R must be constant. Thus,

0 = f̃0(0)

= f̃t(0)

= f̃1(s)

= f̃t(1)

= f̃0(1)

= n

so Φ has trivial kernel. ■

7 Induced Homomorphisms

Recall that a pair of spaces (X,A) consists of two topological spaces satisfying A ⊆ X, and that a map of
pairs f : (X,A) → (Y,B) is a continuous function f : X → Y such that f(A) ⊆ B, also called a pointed
or based map when A and B are singletons.

The induced homomorphism of a pointed map f : (X,x0) → (Y,y0) is the map

f∗ : π1(X,x0) → π1(Y,y0)

[α] 7→ [f ◦ α]

Lemma 7.1. The induced homomorphism f∗ is a group homomorphism.

Proof. Let α
∂≃ β, witnessed by F : I × I → X. Then, G = f ◦ F is a relative homotopy from f ◦ α to

f ◦ β, so we have f ◦ α ∂≃ f ◦ β, and the map is well-defined.

Now, let α,β be loops in π(X,x0). Then,

f∗
(
[α] • [β]

)
= f∗

(
[α ∗ β]

)
=
[
f ◦ (α ∗ β)

]
=
[
(f ◦ α) ∗ (f ◦ β)

]
= [f ◦ α] ∗ [f ◦ β]
= f∗

(
[α]
)
• f∗

(
[β]
)

■
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Example. Consider the covering map p2 : (S1,1) → (S1,1) defined by z 7→ z2, and let ωn be the loop
defined by ωn(s) = exp(2πins). Then, p2 ◦ ωn = ω2n, so the induced homomorphism (p2)∗ is defined by

(p2)∗
(
[ωn]

)
= [ω2n]

Theorem 7.2. Induced homomorphisms satisfy the following properties:

(i)
(
id(X,x0)

)
∗ = idπ1(X,x0);

(ii) Given two pointed maps f : (X,x0) → (Y,y0) and g : (X,x0) → (Y,y0), we have,

(g ◦ f)∗ = g∗ ◦ f∗

That is, the fundamental group is a functor π1 : Top∗ → Grp, acting on objects by (X,x0) 7→ π1(X,x0)
and on morphisms by f 7→ f∗.

Proof.

(i) Precomposing by the identity leaves the loop unchanged, and thus the fundamental group is un-
changed.

(ii) Given a loop γ, we have

(g ◦ f)∗
(
[γ]
)
=
[
(g ◦ f) ◦ γ

]
=
[
g ◦ (f ◦ γ)

]
= g∗

(
[f ◦ γ]

)
= (g∗ ◦ f∗)

(
[γ]
)

■

Theorem 7.3. If f : (X,x0) → (Y,y0) is an isomorphism, then f∗ : π1(X,x0) → π1(Y,y0) is also an
isomorphism.

Proof. Follows from functoriality. That is,

idπ1(X,x0) =
(
id(X,x0)

)
∗

=
(
f ◦ f−1

)
∗

= f∗ ◦ f−1
∗

(and similarly with f and f−1 reversed). ■

It follows that the fundamental group of a path-connected space is a topological invariant: if X ∼= Y ,
then π1(X) ∼= π1(Y ).

8 Homotopy Invariance

Recall that, given a pair (X,A), a retraction is a map r : X → A such that r
∣∣
A
= idA. Retractions and

inclusions naturally fit together in a square,

A A

X X

idA

ι

ι◦r

ι
r
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noting that the upper triangle gives r ◦ ι = idA.

Theorem 8.1. Let r : X → A be a retraction, ι : A ↪→ X be the inclusion. Then, for any point x0 ∈ A,
the induced homomorphisms r∗ : π1(X,x0) → π1(A,x0) and ι∗ : π1(A,x0) → π1(X,x0) have the following
properties:

(i) r∗ is surjective and ι∗ is injective;

(ii) If r is a deformation retract, then r∗ and ι∗ constitute an isomorphism.

Proof.

(i) Because r ◦ ι = id(A,x0), we have from functoriality of π1 that idπ1(A,x0) = (r ◦ ι)∗ = r∗ ◦ ι∗, so ι∗
and r∗ must be injective and surjective, respectively.

(ii) We have that r∗ is surjective, so to establish an isomorphism, it suffices to show that r∗ is also
injective if it is a deformation retract.

Denote by eA : I → A and eX : I → X the constant loops at x0 in A and X, respectively. Let
[γ] ∈ π1(X,x0), and suppose that [γ] ∈ ker(r∗), so r∗

(
[γ]
)
= [r◦γ] = [eA], or equivalently, r◦γ ∂≃ eA.

As r ◦ γ is a loop in A ⊆ X, postcomposing by the inclusion gives the loop ι ◦ r ◦ γ in X that is
homotopic to eX by the same homotopy that takes r ◦ γ to eA.

Because r is a deformation retract, we have ι ◦ r ∂≃ idX witnessed by a homotopy F : X × I → X
relative to A. Construct a new homotopy G : I×I → X by G(s,t) = F

(
γ(s),t

)
between g0 = ι◦r◦γ

and g1 = γ1. Note that G is a based homotopy (at the subspace {0 ∼ 1} ⊂ I) since F is a homotopy
relative to A, and x0 ∈ A, so gt(0) = ft(x0) = x0 for all t ∈ I.

Then, we have eX
∂≃ ι ◦ r ◦ γ ∂≃ γ so [γ] = [eX ]. It follows that r∗ has trivial kernel and is thus

injective.

Now, let [η] ∈ π1(X,x0), and define a new based homotopy from F in the same way as before;
G(s,t) = F

(
η(s),t

)
. Because f1(X) = r(X) = A, the loop g1 = f1 ◦ η is contained within A, so g1

is a loop in A and hence [g1] ∈ ι∗
(
π1(A,x0)

)
. Since G is a homotopy, g1

∂≃ η, so [g1] = [η], and ι∗
is surjective.

■

In particular, this also implies that (ι ◦ r)∗ : π1(X,x0) → π1(X,x0) is also an isomorphism for any
deformation retract r.

Theorem 8.2. If f : X → Y is a homotopy equivalence, then for any x0 ∈ X, the induced homomor-
phism f∗ : π1(X,x0) → π

(
Y,f(x0)

)
is an isomorphism.

This shows that not only is the fundamental group a topological invariant, but more generally a homotopy
invariant: if X ≃ Y , then π1(X) ∼= π1(Y ).

Proof. WIP ■

9 The Brouwer Fixed Point Theorem

In the previous section, we showed that retractions induce surjective homomorphisms. One simple
application is as follows:

Theorem 9.1. There is no retract from the the unit disc D2 to the circle S1.
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Proof. Such a retraction would imply a surjection π1(D
2,1) ↠ π1(S

1,1), but π1(D2,1) = 0, while
π1(S

1,1) ∼= Z. ■

A more important consequence of this “no retract” theorem generalises the fact that a continuious function
f : I → I has a fixed point. This is a straightforward consequence of the intermediate value theorem (in
fact, the statement is true if f is only increasing, and not continuous, though this proof is more involved),
but the generalisation to maps f from I × I ∼= D2 to itself is surprisingly non-trivial.

Theorem (Brouwer Fixed Point Theorem). Every map f : D2 → D2 has a fixed point.

Proof. WIP ■

9.1 Applications
One application of the Brouwer fixed point theorem is to eigenvectors. The following result is a special
case of the Perron-Frobenius theorem:

Theorem 9.2. Let A ∈ R3×3 be a matrix with only positive entries. Then, A has an eigenvector v with
only positive entries.

Proof. WIP ■

Another application of the Brouwer fixed point theorem is the famous Borsuk-Ulam theorem, but first,
some additional theory is required for its proof.

9.1.1 Odd and Even Maps

Recall that an involution is an endofunction f : X → X that is its own inverse; f
(
f(x)

)
= x, or

f ◦ f = idX . One important example is the negation function, f(x) = −x – but note that this only
makes sense in spaces that are symmetric about the origin of their coordinate systems. For instance,
f(x) = −x does not make sense as function I → I.

Let X and Y be spaces with negation. A map f : X → Y is odd if f(−x) = −f(x), and even if
f(−x) = f(x) for all x ∈ X. Note that a map may be neither odd nor even.

Example.

• The zero map is the unique map that is simultaneously odd and even.

• The identity map is odd, as id(−x) = −x = − id(x);

• The map p2 : S1 → S1 defined by z 7→ z2 is even, as p2(z) = z2 = (−z)2 = p2(−z).

• The map p3 : S1 → S1 defined by z 7→ z3 is odd, as p3(−z) = −z3 = −p3(z).

• The (circular, hyperbolic) sine function is odd, while the (circular, hyperbolic) cosine function is
even.

• The exponential function exp : R → R is neither odd nor even.

Lemma 9.3. The composition of,

(i) Two even functions is even;

(ii) Two odd functions is odd;

(iii) An even and odd function (in either order) is even;

(iv) Any function with an even function is even (but not the reverse).
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Proof. Let f be any function and suppose g is even. Then,

(f ◦ g)(−x) = f
(
g(−x)

)
= f

(
g(x)

)
= (f ◦ g)(x)

so f ◦ g is even. This covers (i), the reverse of (iii), and (iv).

For (ii), suppose f,g are odd. Then,

(f ◦ g)(−x) = f
(
g(−x)

)
= f

(
−g(x)

)
= −f

(
g(x)

)
= −(f ◦ g)(x)

and f ◦ g is odd.

For the other direction of (iii), suppose f is even and g is odd. Then,

(f ◦ g)(−x) = f
(
g(−x)

)
= f

(
−g(x)

)
= f

(
g(x)

)
= (f ◦ g)(x)

so f ◦ g is even. ■

9.2 Null-Homotopic Maps
A map f : X → Y is null-homotopic if it is free homotopic to a constant map. That is, if there exists a
constant map e and a free homotopy F : X × I → Y with f0 = f and f1 = e.

A pointed map f : (X,x0) → (Y,y0) is null-homotopic relative to the basepoint if it is relatively homotopic
to the constant map ey0 . That is, there exists a homotopy F : X × I → Y such that

• f0 = f ;

• f1 = ey0 ;

• ft(x0) = y0 for all t ∈ I.

Conistent with the earlier notation for general relative homotopies, if f is null-homotopic relative to the
basepoint x0, we write f

x0≃ e.

Note that, even if the map f : X → Y is homotopic to ey0 , and x0 ∈ X is such that f(x0) = y0, we do
not necessarily have that the pointed map f : (X,x0) → (Y,y0) is null-homotopic, because a homotopy
for the former need not preserve the pointedness of the intermediary maps ft, while a null-homotopy of
a pointed map further requires that ft(x0) = y0 for all t.

Lemma 9.4. Let p : X̃ → X be a covering, and let γ : I → X be a loop such that γ
∂≃ ex0 . Let

x̃0 ∈ p−1
[
{x0}

]
, and let γ̃ be the lift of γ with γ̃(0) = x̃0. Then, γ̃

∂≃ ex̃0
.

Proof. Let F : I × I → X be a homotopy between γ amd ex0 . By the homotopy lifting property of
coverings, there is a unique homotopy F̃ : I × I → X̃ between γ̃ and ex̃0

:
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γ

x0

ex0

x0 F

s

t

HLP

γ̃

x̃0

ex̃0

x̃0 F̃

The left, right, and upper boundaries of the square on the right are all constant paths at x0, so γ̃ is a
loop at x̃0, which is homotopic to ex̃0

via F̃ . ■

Theorem 9.5. If f : S1 → S1 is odd, then f is not null-homotopic.

Proof. WIP ■

Corollary 9.5.1. If f : S2 → R2 is odd, then f has a root.

Proof. WIP ■

9.2.1 The Borsuk-Ulam Theorem

Theorem (Borsuk-Ulam). For any continuous map f : S2 → R2, there exists a point x ∈ S2 with
f(x) = f(−x).

That is, for any continuous mapping of the sphere to R2, there exists two antipodal points for which the
mapping has the same value.

One famous example of this theorem notes that mapping points on the Earth’s surface to their tem-
perature and atmospheric pressure can reasonably be assumed to be a continuous mapping, so the
Borsuk-Ulam theorem states that at any time, there exist two antipodal points on the Earth’s surface
with equal temperature and atmospheric pressure.

Proof. Define g : S2 → R2 by
g(x) := f(x)− f(−x)

We have g(−x) = f(−x) − f(x) = −g(x), so g is odd, so by the previous corollary, g has a zero. That
is, some x ∈ S2 such that

g(x) = 0

f(x)− f(−x) = 0

f(x) = f(−x) ■

9.3 Fundamental Groups of Product Spaces
Theorem 9.6. Let (X,x0) and (Y,y0) be pointed spaces. Then,

π1(X × Y,x0 × y0) ∼= π1(X,x0)× π1(Y,y0)

That is, π1 preserves binary products.
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Proof. By the definition of the product topology, a map Z → X × Y is continuous if and only if the
components p1 ◦ f and p2 ◦ f are continuous, so a loop γ : I → X × Y is equivalent to a pair of loops
γ1 : I → X and γ2 : I → Y .

Similarly, a homotopy F between loops in X×Y is equivalent to a pair of homotopies F1 and F2 between
the equivalent loops in X and Y . That is, if α

∂≃ β, then p1 ◦ α
∂≃ p1 ◦ β, and p2 ◦ α

∂≃ p2 ◦ β.

This induces a bijection [γ] 7→
(
[p1 ◦ γ],[p2 ◦ γ]

)
, which gives the required isomorphism. ■

Example. The torus T 2 = S1 × S1 with basepoint (1,1) has fundamental group

π1
(
T 2,(1,1)

) ∼= π1(S
1,1)× π1(S

1,1) ∼= Z× Z

Corollary 9.6.1. By induction,

π1

(
n∏
i=1

(Xixi)

)
=

n∏
i=1

π1(Xi,xi)

Example. The torus Tn =
∏n
i=1 S

1 has fundamental group

π1
(
Tn
) ∼= n∏

i=1

π1(S
1) ∼= Zn

Theorem 9.7. For all n ≥ 2, we have π1(Sn) ∼= 0.

Proof. WIP ■

10 Galois Correspondence

Lemma 10.1. Let p : X̃ → X be a covering, and let x0 ∈ X and x̃0 ∈ p−1
[
{x0}

]
. Then,

(i) The induced homomorphism p∗ : π1(X̃,x̃0) → π1(X,x0) is injective;

(ii) If [α] ∈ π1(X,x0), and α̃ is the lift of α with α̃(0) = x̃0, then α̃ is a loop if and only if [α] ∈
p∗
(
π1(X̃,x̃0)

)
.

Proof.

(i) Suppose p∗ sends [α̃] ∈ π1(X̃,x̃0) to the constant loop [ex0 ]. That is, p ◦ α̃ ∂≃ ex0 . Then by Lemma

9.4, α̃
∂≃ ex̃0

, so [α̃] = [ex̃0
] and p∗ has trivial kernel.

(ii) If α̃ is a loop, then p∗
(
[α̃]
)
= [p ◦ α̃] = [α] ∈ p∗

(
π1(X̃,x̃0)

)
.

Conversely, suppose that [α] = p∗
(
[γ̃]
)

for some [γ̃] ∈ π1(X̃,x̃0), so

α = p ◦ α̃
∂≃ p ◦ γ̃
= γ

so there is some relative homotopy F from α to γ that lifts to a homotopy from α̃ to γ̃:
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α

x0

γ

x0 F

s

t

HLP

α̃

x̃0

γ̃

x̃0 F̃

The left and right boundaries of F are constant, so they lift to constant paths at x̃0, so α̃ is a loop
(based at x̃0) as required.

■

This shows that for any covering p, the image p∗
(
π1(X̃,x̃0)

)
is a subgroup of π1(X,x0) that is isomorphic

to π1(X̃,x̃0).

Example. The covering p2 : S1 → S1 induces the doubling map n 7→ 2n, so

(p2)∗
(
π1(S

1,1)
) ∼= 2Z ≤ Z ∼= π1(S

1,1)

Let p : X̃ → X be a covering, and suppose X is connected. Then, the cardinality of the preimage of any
point in X is called the degree of the covering:

deg(p) :=
∣∣p−1

[
{x}
]∣∣

Recall that, given a group G and a subgroup H ≤ G, the index [G : H] of H in G is the number of right
(or left) cosets G/H = {Hg : g ∈ G}.

Lemma 10.2. Let p : X̃ → X be a covering and suppose that X̃ and X are path-connected. Let x0 ∈ X
and x̃0 ∈ p−1

[
{x0}

]
. Then,

deg(p) =
[
π1(X,x0) : p∗

(
π1(X̃,x̃0)

)]
Proof. WIP ■

11 Wedge Sums

Let
{
(Xα,xα)

}
α∈Λ

be a collection of pointed spaces. The wedge sum of this collection is the “one-point
union” of the spaces, defined as: ∨

α∈Λ

(Xα,xα) :=
⊔
α∈Λ

Xα
/
∼ xβ

That is, the disjoint union of each space with all the basepoints identified.

Example. The wedge sum of two pointed circles is the figure-eight graph:

S1 ∨ S1
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The identified point is a natural choice of basepoint for the wedge sum, and selecting this point makes the
wedge sum associative and commutative (up to homeomorphism) over pointed spaces, as every basepoint
is always identified to the same point, so associativity and commutativity follow from disjoint unions
being associative and commutative.

However, we may also treat the output as an ordinary topological space without any distinguished
basepoint, in which case, the wedge sum is then not associative, as a new basepoint may be selected
between applications.

If an expression involving wedge sums is not bracketed, we will assume that the natural basepoint is
selected, so the resulting space is unambiguous and unique.

Example.

S1 ∨ S1 ∨ S1 (S1 ∨ S1) ∨ S1

In the first case, all three basepoints coincide, resulting in the bouquet of three circles. In the second,
we were free to pick a basepoint distinct from the centre of the figure-eight, where the third circle was
adjoined.

Let us mark two loops a and b on S1 ∨ S1:

S1 ∨ S1

and denote their reverse paths by a−1 and b−1.

Note that any loop in S1 ∨ S1 can be decomposed into a string consisting of the symbols a, b, a−1, and
b−1. For example,

aaba−1b−1a

corresponds to the loop that travels along a twice, b once, a backwards, b backwards, then a.

Some strings of this form may be reduced up to homotopy, as any substring consisting of a loop adjacent
to its inverse is homotopic to the constant loop, which may then be removed from the string.

This structure is well-suited to be described by free products.

11.1 The Free Product of Groups
Let {Gα}α be a collection of groups. A word on these groups is a finite sequence g1 · · · gm of elements
gi ∈ Gαi , and m is the length of the word. The empty word of length 0 is denoted by ε. The product of
two words is their concatenation

(g1 · · · gm) ∗ (h1 · · ·hn) = g1 · · · gmh1 · · ·hn

A word is reduced if it does not contain the identity of any group, and if every pair of consecutive letters
is not from the same group.
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Given any word g on the groups {Gα}α, we can reduce it to a reduced word g′ by recursively removing all
identity elements and replacing any consecutive elements gi,gi+1 from the same group with their group
product gi · gi+1.

Let ∗αGα be the set of reduced words on {Gα}α. We can define an operation on this set as follows:
given reduced words g = g1 · · · gm and h = h1 . . . hn, construct a new reduced word g • h by taking the
concatenation g ∗ h, then reduce the word recursively

g • h =


gh gm ∈ Gα,h1 ∈ Gβ , Gα ̸= Gβ

g1 · · · gm−1(gm · h1)h2 · · ·hn gm,h1 ∈ Gα, gm · h1 ̸= idGα

g1 · · · gm−1 • h1 · · ·hn gm,h1 ∈ Gα, gm · h1 = idGα

Then, (∗αGα,•) is a group called the free product of {Gα}α, with identity ε, and the inverse of an element
g1 · · · gm is given by g−1

m · · · g−1
1 .

Example. The free product of Z2 with itself is given by the semidirect product Z2 ∗ Z2
∼= Z ⋊ Z2.

Example. If G = ⟨a | a4⟩ and H = ⟨b | b5⟩, then G ∗H = ⟨a,b | a4 = b5⟩.

Every group Gα is a subgroup of the free product ∗αGα via the inclusion ια : Gα ↪→ ∗αGα that maps
each non-identity g ∈ Gα to the string g, and the identity to the empty string. The free product satisfies
the following universal property:

Lemma 11.1. Any pair of homomorphisms from groups G and H into K factor uniquely through the
free product.

That is, for any group homomorphisms φ : G→ K and ψ : H → K, there exists a unique homomorphism
φ ∗ ψ : G ∗H → K such that

G G ∗H H

K

φ ψ

ι1 ι2

φ∗ψ

commutes.

This holds more generally, with a collection of homomorphisms φα : Gα → K factoring uniquely through
a map ∗αϕα : ∗αGα → K:

Gα ∗αGα

K

φα

ια

∗αφα

12 The Seifert-van Kampen Theorem

Let X be a topological space and {Uα}α be an open cover with inclusion maps ια : Uα ↪→ X, and further
suppose that the intersection

⋂
α Uα is non-empty.

Let x0 ∈
⋂
α Uα, and consider the pointed spaces (Uα,x0). The inclusion maps ια : Uα → X induce

homomorphisms between the fundamental groups based at x0:

(ια)∗ : π1(Uα,x0) → π1(X,x0)
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which factor through the free product map

Φ = ∗α(ια)∗ : ∗απ1(Uα,x0) → π1(X,x0)

If the pairwise intersections Ua ∩ Ub are path-connected, then Φ is surjective; but in general, it is not
injective, as loops in the intersections are counted twice in the free product.

The inclusions ιab : Ua∩Ub → Ua of the intersections then also induce maps between fundamental groups,
completing the commutative diagram:

π1(Ua,x0)

π1(Ua ∩ Ub,x0) ∗απ1(Uα,x0) π1(X,x0)

π1(Ub,x0)

(ιba)∗

(ιba)∗

ia

ib

Φ

(ιa)∗

(ιb)∗

In categorical language, (ιa)∗ and (ιb)∗ form a pushout for all a,b.

Now, note that every class ω ∈ π1(Ua ∩ Ub,x0) is represented twice in ∗απ1(Uα,x0) as (ιab)∗(ω) and as
(ιba)∗(ω). Define the set

Vab =
{
(iab)∗(ω)(iba)∗(ω)

−1 : ω ∈ π1(Ua ∩ Ub,x0)
}

and define V =
⋃
a,b Vab. We then define N to be the normal closure of V . That is, the minimal normal

subgroup N of ∗απ1(Uα,x0).

Theorem (Seifert-van Kampen). Let X be a topological space, {Uα}α be an open cover with non-empty
intersection, and x0 some point in

⋂
α Uα. Then,

(i) If the intersection Ua ∩ Ub is path-connected for all a,b, then the free product map

Φ = ∗α(ια)∗ : ∗απ1(Uα,x0)

is surjective.

(ii) If in addition the intersection Ua ∩ Ub ∩ Uc is path-connected for all a,b,c, then ker(Φ) = N and
hence

π1(X,x0) ∼= ∗απ1(Uα,x0)
/
N

Example. Consider the sphere Sn for n ≥ 2, with the cover {U1,U2} given by the sets obtained by
deleting two distinct points from the sphere. The intersection is path-connected, so

Φ : π1(U1,x0) ∗ π1(U2,x0) → π1(S
n,x0)

is surjective. The open sets U1 and U2 are also both homeomorphic to Rn, which is contractible, so their
fundamental groups, and hence the free product, are trivial, so π1(Sn,x0) must also be trivial.

This argument fails for S1 as the intersection U1 ∩ U2 is disconnected.

Example. Let (X,x) =
∨
α(Xα,xα) be the wedge product with natural basepoint x = [xα], and suppose

that for every α, there exists a contractible open neighbourhood Nα ⊆ Xα of xα. Then, for each α,
define Uα = Xα ∨

∨
β ̸=αNβ .
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Each Uα is open in X, and the basepoint is contained in their intersection
⋃
α Uα by construction, and

each pairwise intersection is
∨
α Uα, which deformation retracts to x, i.e. is contractible. It follows that

the pairwise intersections have trivial fundamental groups, so by Seifert-van Kampen, we have

π1

(∨
α

Xα,x

)
∼= ∗απ1(Xα,xα)

13 Generators and Relations

A presentation is a method of specifying a group G via a set S of generators – so that every element
of the group may be expressed as a product of generators – and a set R of relations between those
generators, and we write that G has presentation

⟨S | R⟩

Informally, G is the “most general” or “freest” group generated by S constrained only by relations in R.
Formally, G has presentation ⟨S | R⟩ if it is isomorphic to

G ∼= ⟨S⟩
/
⟨⟨R⟩⟩

where ⟨⟨R⟩⟩ is the normal subgroup generated by R.

Example. The cyclic subgroup Zn has presentation

⟨a | an = 1⟩

This may also be written as
⟨a | an⟩

where the convention is that any terms without an equality symbol are taken to be equal to the group
identity.

A group is finitely generated if its set of generators S is finite; finitely related if its set of relators R is
finite; and finitely presented if both S amd R are finite.

Example. Consider the Klein bottle K,

p p

p p

a a

b

b

K

The 1-skeleton X1 consists of the loops a and b, and the 0-skeleton is the single point p, so the generators
are the classes corresponding to the cycles a and b, and the single relation is the loop that forms the
boundary, given by baba−1, so we have the presentation

⟨a,b | baba−1⟩

However, there are several cell structures on K. One rearrangement is as follows:
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a a

b

b

c

bb

a
c c

c b

b

c

a

p p

p p

c b

b

c

The resulting presentation is then
⟨b,c | b2c2⟩

This is of course obtainable purely group-theoretically by defining new elements in terms of old ones,
but we also see that each presentation corresponds to a different way of describing a topological space.

14 List of Useful (Counter)examples

• The topologist’s sine curve is the subspace T ⊆ R2 defined by

T =

{(
x, sin

1

x

)
: x ∈ (0,1]

}
∪
{
(0,0)

}

0.5 1

−1

−0.5

0.5

1

The topologist’s sine curve is connected but not path-connected because the origin cannot be
separated from the rest of the curve, but also cannot be connected to the rest of the curve via a
path.

• Define Cn ⊆ R2 as the circle of radius 1/n centred at (0,1/n). The Hawaiian earring is the union

H =
⋃
n∈Z+

Cn

equipped with the subspace topology.

The Hawaiian earring looks similar to the infinite wedge sum

X =
∨
n∈N

S1

but they are not homeomorphic:

– The fundamental group π1(X) is countable, while π1(H) is uncountable.

– The Hawaiian earring is compact, while the wedge sum is not.
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– In the Hawaiian earring, every open neighbourhood of the intersection point completely con-
tains all but finitely many of the circles (i.e. an ε-ball around (0,0) contains every circle whose
radius is less than ε/2), while in the wedge sum, such a neighbourhood may contain no circles
at all.

• The topologist’s comb is the subset C ⊆ R2 defined by

C =
(
{0} × [0,1]

)
∪
({

1

n
: n ∈ N+

}
× [0,1]

)
∪
(
[0,1]× {0}

)

The comb space is contractible but does not deformation reformation to any point on the line
segment {0} × [0,1].

• The closed long ray is the product of the first uncountable ordinal ω1 with the half-open interval
[0,1):

L =
∏
i∈ω1

[0,1)

equipped with the lexicographical order topology. (Compare with the real number line, which can
be constructed as the product of N copies of [0,1).)

The open long ray is obtained by removing (0,0), and the long line is then obtained by gluing
together two copies of the closed long ray at the origin.

– The long rays and line are path-connected but not contractible.

– The long rays and line are normal, Hausdorff, and sequentially compact, but not compact nor
metrisable.
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